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INTRODUCTION

Mandelbrot, Passoja, and Paullay (ref 1) defined the slit island method

(SIM), established the fractal nature of fracture surfaces, and reported the

negative correlation of fractal dimension 0 with fracture toughness in a selec-

tion of steel alloys in 1984. They also established for the steel samples

studied the fractal dimension equivalent (within two percent) determined by SIM

and Fourier analysis of fracture surface profiles. Since the publication of

Reference 1, SIM has been applied to study metallic fracture surfaces in a

number of papers (refs 2-5).

The SIM yields 0 of fracture surfaces by analyzing the fractal nature of

"islands" produced by taking sections (essentially) parallel to the fracture

surface. The island perimeter-area relation is used to determine the fractal

uimension of the coastline curves, and then Mandelbrot's rule (ref 6) is

employed to obtain the fractal dimension of the fracture surface from the

coastline fractal dimension. Mandelbrot's rule states that, "...if the section

is nonempty, it is "almost sure" that its dimension is 0-1...." Exceptions are

associated with symmetry axes and are not expected to occur in fracture surface

sections.

In this report, with Mandelbrot's rule in mind, we employ the imprecise

usage currently in vogue, i.e., we employ the same nomenclature (viz., fractal

dimension) and notations (viz., D, Do, etc.) for fractal dimension of the frac-

ture surface and of the curves bounding the islands produced by sectioning frac-

ture surface and also for the fractional part of the fractal dimension. In

addition, we employ the common imprecise nomenclature regarding the definition

of fractals, and we refer to objects or mathematical constructs, which scale

like a fractal only over a limited range of scales, as fractals.



Two recent publications have questioned the validity of the SIM as a tool

for fractal studies. Pande et al. (ref 4) draw a sweeping indictment of the SIM

on the basis of some puzzling observations in titanium alloys. Lung and Mu (ref

5) suggest that SIM yields useful information, but does not measure the

"intrinsic" fractal dimension Do. Since sectioning and the perimeter-area rela-

tion are basic tools of fractal analysis of surfaces, the implications of these

critiques extend beyond fracture surface characterization to diverse areas in

meteorology, metallurgy, biology, and geography as described in Reference 7.

Pande et al. studied a series of titanium alloys, employing Fourier analy-

sis of fracture profiles and SIM. Their results raise serious questions con-

cerning the application of SIM and the validity of "Mandelbrot's rule." The D

values determined by the two techniques exhibited gross discrepancies: profile

Fourier analysis yielded D less than 2.1, while SIM yielded D greater than 2.4.

These results (and others associated with perimeter-yardstick studies in the

same alloys) led Pande et al. to conclude "...that the slit island method is

fundamentally flawed as a measurer of the fractal dimension of a fracture

surface."

Lung and Mu contributed a very provocative study of fracture surfaces in

steel alloys. Features of their assumptions and theoretical analysis include:

1. Fracture surfaces are "literally" self-similar.

2. There exists a "critical yardstick" value E0 , presumably different for

different classes of metals but independent of the fracture toughness, such that

for E < E0 the measured fractal dimension Dm exhibits a positive correlation

with fracture toughness.

3. If a "small enough" yardstick were employed, SIM would yield the

"intrinsic" fractal dimension DO (presumably 0O is Mandelbrot's 0).
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4. As E decreases. Dm - Do. thus, the fracture toughness would show a

positive correlation with the intrinsic fractal dimension DO.

5. Quantitative expressions for the measured fractal dimension at an

arbitrary yardstick are derived that are consistent with their steel alloy

results and predict an extremely slow approach of Dm (as measured by SIM) to DO

(= 0) as E is reduced for Koch ouadric islands.

Features of the experimental results of Lung and Mu for 30CrMnSiNi 2A steels

include:

1. SIM analysis of fracture surfaces at a yardstick of 1.85 um is con-

sistent with those usually reported. That is, fractal behavior is observed and

the measured fractal dimension exhibits negative correlation with the fracture

toughness.

2. SIM analysis of fracture surfaces at yardsticks of 0.08 and 0.15 um

yield measured fractal dimension Dm which show a positive correlation with the

fracture toughness.

3. The measured fractal dimension versus yardstick data (shown in their

Figure 1) show no sign of convergence.

Based upon their theoretical and experimental results, Lunq and Mu

concluded that, "...the fractal dimension Dm as determined by the perimeter-area

relation is not the intrinsic fractal dimension D of a fractured metal

surface..." and that the critical yardstick E0 lies between 0.08 and 1.85 um in

30CrMnSiNi 2A steels. (Their Figure 1 suggests that E0 is greater than 0.15 um.)

Since the negative correlation of fracture toughness with fracture surface

fractal dimension reported in all other studies of metallic systems has been

extremely difficult to understand, the finding of Lung and Mu that for a "small

enough" yardstick a positive correlation of fracture toughness with measured

fractal dimension in 30CrMnSiNi 2A steels is obtained constitutes an important
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discovery. However, Lung and Mu's conclusion that SIM does not measure fractal

dimension (even for the 0.08 pm yardstick results in their paper) is quite

disturbing.

To address the questions raised in References 4 and 5, and because the

perimeter-area relation plays a central role in fractal analysis in general, the

principal objective of this report is the formulation of a generalized

yardstick-dependent perimeter-area relation. A primary application of the pres-

ent results, incorporating the earlier discussion of Mandelbrot, Passoja, and

Paullay, is to provide an interpretation of the SIM results for metallic frac-

ture surfaces in general and those of Lung and Mu for steel fracture surfaces in

particular.

It is also demonstrated that:

1. The standard perimeter-area relation of Reference 1 is valid for "small

enough" yardsticks and self-similar fractal curves. That is, the conventional

result is obtained in the appropriate limit for self-similar fractal curves.

2. The question of "small enough" yardstick is addressed and discrepancies

to be expected at larger yardsticks are discussed.

3. Yardstick-dependent corrections to the perimeter-area relation are

derived for Koch fractal curves based upon the "sawtooth" generators of Zhang

and Lung (ref 7) and Koch quadric islands.

4. Conventional perimeter-area analysis (as in the SIM) is applied to the

numerical evaluation of the fractal dimension of fourth generation Koch quadric

islands. The deduced fractal dimension is found to be essentially the intrinsic

fractal dimension of the construction (i.e., D = 1.5). This finding is con-

sistent with the generalized perimeter-area relation derived here and is incon-

sistent with the much lower values predicted by the theory of Lung and Mu.
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THEORY

The concept of lenqth is central to the discussion of fractals. One

requires a yardstick and an algorithm to define and measure lengths. For the

ordinary curves of Euclidean geometry, the definitions have the property that

the measured length P(E) converges to the "true length" as the yardstick length

E decreases. One refers to such curves as rectifiable. However, for the same

definitions, the measured length of a fractal curve increases essentially

without bound as the yardstick length decreases.

Note that throughout the literature and in this report quantities are

represented as smooth continuous functions of E, although, especially at "large

yardstick," they vary discontinuously. One thinks of these expressions as

holding in a statistical sense or as "smoothed" functions.

Routine Constraint on Yardstick Length

There is a well-known sense of yardstick "too large," which applies to both

rectifiable and fractal curves. Consider, for example, measurement of the

length of an ellipse, a rectifiable curve. To obtain a good approximation, one

must choose a yardstick small, for example, relative to the sum of the distances

of a typical point from the foci. Pande et al. in their paper (ref 4) discussed

this type of limitation in terms of an outer cutoff for fractal behavior.

The Length-Yardstick Rule

The theory underlying t'e perimeter-area relation is developed in the con-

text of a simple m(del: +he length of a fractal curve P(E) measured with

yardstick E is given by

P(E) = F*E1-O (1)

where F and 0 are constant over the range of yardstick lengths E of interest.
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Although F and D may not be strictly constant in practice, Eq. (1) has proved

useful in modeling curves found in nature. Mandelbrot (ref 6) credited

Richardson with the discovery of this form, identified the exponent 0 with the

Hausdorf dimension, and coined the term fractal dimension for 0.

Length and Area Measurement

The length-defining algorithms discussed in this report express the length

of a curve at yardstick E as the product of a measurable number N(E) and E,

i.e.,

P(E) = N(E)E (2a)

Tn such cases, Eq. (1) implies

N(E) = F*E- D  (2b)

Similarly, the area-defining algorithms discussed in this report express

the area within a closed curve at yardstick E as the product of a measurable

number and E2 . The area within a closed fractal curve is usually implicitly

assumed to be essentially yardstick-independent.

"Method A" of Mandelbrot. The Polygon Approximation

The discussion of length in this report is presented in the context of

"Method A" of Mandelbrot, which we refer to as the polygon approximation. In

the polygon approximation, the length of a curve is measured by setting dividers

to an opening E and "walking" them around the curve, yielding an E-dependent

length given by Eq. (2a) where N(E) is the number of divider steps. The

resulting length is that of an equilateral polygon of side E touching the frac-

tal curve at its vertices. The natural definition of area A(E) at yardstick E

is the area of the approximating equilateral polygon. Although this algorithm

has not been applied to measure curve lengths (or areas) in the SIM, it is easy
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to visualize and yields results equivalent to those given by other algorithms

that are computationally easier to implement.

The Box-Counting Algorithm

The algorithms applied in the SIM are equivalent to a "box-counting

algorithm," which might be implemented as follows:

1. Superimpose a rectangular grid of spacing E over the island in

question.

2. Define N(E), which is the curve length in units of E according to Eq.

(2a), as the number of boxes containing a section of coastline.

3. Define the area in units of E2 of the island as the number of boxes

inside the coastline plus half the number of boxes on the coastline.

This form of "box-counting algorithm" is employed in the model calculations

reported below; it is equivalent to the methods described in Reference 1 for

"small enough" E.

In practice, a box-counting algorithm might be implemented by counting

boundary and interior pixels in a digitized image of the fractal curve with the

yardstick being simply related to the pixel density. To model such a pixel-

counting algorithm, we define N(E) as the number of boxes cut on their lower

boundary by the curve in question. We have also applied an algorithm which

examines all the box boundaries to determine occupancy and obtained results

indistinguishable from those obtained employing the abbreviated algorithm.

Consequences of the Self-Similarity of Fracture Surfaces

Fractal characterization of fracture surfaces is based on the idea that

fracture surfaces are statistically self-similar. Self-similarity of the frac-

ture surface implies two types of self-similarity for the "islands" produced in

the SIM:
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1. The coastlines of the islands are individually (statistically) self-

similar. Self-similarity for a given coastline implies that the structure

satisfies a scaling condition in the sense that at any given scale the structure

can be viewed as a scaled-down (or up) version of the structure viewed at any

other scale. Such self-similar curves are fractal and satisfy Eq. (1). (In

practice, of course, the range of scales for which self-similarity is obtained

is generally limited.)

2. The ensemble of islands is statistically self-similar, and each island

can be classified according to its characteristic length LO . In this context,

self-similarity implies that for a given ratio of yardstick-to-characteristic

length

c . E/L0  (3)

the ensemble of polygon approximations (corresponding to the ensemble of

islands) based upon the appropriate yardsticks, (i.e., 2 = cL0 for an island of

characteristic length LO) is statistically similar. The polygon approximations

for different L0 and given c are precisely similar in the case that the islands

are strictly self-similar. Here similar is used in the ordinary way familiar

from Euclidean geometry.

To describe the self-similar ensemble of islands produced in the SIM, we

generalize Eqs. (1) and (2) making the L0 dependence explicit. For such islands

the number of divider steps N(E,Lo) will depend only on c (= E/Lo). Thus,

N(E,LO ) = N(c) = F'E
O = F'E-0 LoD  (4)

where the constant F' (= F/LoD) is independent of E and LO. Similarly, the

coastline length P(E,Lo) of an island having characteristic length L0 is given

by

P(E,L O ) = N(E,Lo)E = N(c)E = F'EI-OLoO (5)

N.b., The polygon approximations of given E or c are not unique.
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Therefore, the polygon approximations are not necessarily similar. However, for

strictly self-similar curves, similar polygon approximations exist, and it is to

these that the discussion literally applies. We are consciously imprecise in

this discussion to avoid numerous modifying clauses and because the arguments

are essentially correct for the cases where only approximate similarity is

obtained.

The Perimeter-Area Relation

The SIM employs the perimeter-area relation to determine the fractal dimen-

sion of the slit island coastlines 0 and hence to determine the fracture surface

fractal dimension. Although, as usually implemented, the island perimeters and

areas are measured at fixed yardstick E by the box-counting algorithm, we derive

the relation in the equivalent polygon approximation at fixed yardstick E here

because it is easier to visualize.

In order to derive the perimeter-area relation given in Eq. (5), we need to

relate the area to LO . The area A(E,LO ) of an island having characteristic

length L0 measured with yardstick E is taken as that of the equilateral polygon

of side E constructed to evaluate P(E,Lo).

For self-similar islands, polygon approximations of the same C are similar

and the area of a polygon approximation of given c is proportional to L0 2.

Thus,

A(E,L O ) a G(e)L 0
2 = G(c)E2 /C2  (6)

where the "area shape factor" G(c), which depends only on c for a given self-

similar shape, is defined in Eq. 6.

Equation (5) can be rewritten at fixed E as

P(E,L O ) = F'E
1-DLo D = C(E)Lo D = C(E)(EZ/cZ]o/ 2  (7)

where C(E) is an E-dependent constant. Thus, one may combine Eqs. (6) and (7)

to obtain
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P(E,L O ) = C(E)[A(E,L0 )/G(E)]O/
2  (8)

Equation (8) provides a theoretical basis for a relation similar to Eq. (1) of

Lung and Mu (ref 5).

Since, in conventional perimeter-area analysis one takes twice the slope of

the log-log plot of P versus A for fixed E as the fractal dimension and

following Lung and Mu, we define the "measured fractal dimension" Om by

0m/2 a [d ln(P)/d 1n(A)]E = [d ln(P/E)/d Jn(A/E 2)]E (9)

Thus, Eq. (8) implies that

0/2 = -[d Jn(P)/d ln(e 2 )]E

= -(d ln(P)/d ln(G/c)IE[d ln(G/e 2 )/d ln(c 2 )]E

= [d ln(P)/d 1n(G/C 2 )]E[1-d fn(G)/d ln(c 2 )]E

= (Dm/2) [1-d In(G)/d 1n(e 2)]E

= (Dm/2) [1-d fn(G)/d ln(c2 )] (10)

where the second, third, and fifth equalities are identities, and the fourth

equality follows from the definition of Dm . Of course, the derivatives in Eqs.

(9) and (10) are to be evaluated for "smoothed" fits to experimental data, etc.

The fractal dimension actually determined in perimeter-area or perimeter-

yardstick analyses shall be denoted DM in the sequel to discriminate it from the

measured fractal dimension Dm defined above and from the intrinsic fractal

dimension of the construction or fracture surface 0. We shall use the nomencla-

ture "measured fractal dimension" for DM and 0m . Lunq and Mu implicitly assume

that DM = 0m; we find that DM 4 0m in our analysis.

MODEL CALCULATIONS

Simple closed Koch fractal curves (which are characterized by an initiator,

a single generator, having topological dimension DT equal 1, no fragmentation,

etc.) in the plane are discussed in this section. The discussion is restricted
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to Koch constructions based on equilateral triangular and square initiators and

generators composed of a continuous chain of N equal length line segments. The

generators surveyed include that for Koch quadric islands and the "sawtooth"

generators discussed by Zhang and Lung (ref 7). The quadric island generator

was chosen to allow direct comparison with the theoretical results of Lung and

Mu (ref 5) and because the fractal construction is well-known. The sawtooth

generators were selected, even though there are problems of self-intersection at

advanced generations, because they yield constructions consistent with the rela-

tively sharp angular features and relatively small fractal dimensions typical of

metallic fracture surfaces.

Lengths and Areas For the Koch Fractal Curves

It is well-known that for Koch constructions based on generators consisting

of NG equal length elements each reduced in length by a factor r from the pre-

vious stage (i.e., the cases discussed here), the fractal dimension of the

resulting construction is given by

D = -log(NG)/log(r) (11)

and that Eqs. (1) and (2), incorporating Eq. (11), define the curve length P(E)

and number of segments N(E) at each stage of construction. Furthermore, these

Koch constructions are literally self-similar (for the appropriate range of

scales), and the "area shape factor" G(c) is readily obtained.

Equations (6) to (10) provide a basis for addressing the discrepancies to

be anticipated between, for example, the measured and intrinsic fractal dimen-

sions for Koch fractal curves. The results obtained for Koch constructions pro-

vide simple examples of the implications of the present analysis and, one

presumes, insight into the more complex structure of real fracture surfaces.
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Scalina For the Koch Constructions

The literal self-similarity implicit in the Koch construction implies that

numerical evaluations of P(E,L) from a single island, having unit characteristic

length for a selection of yardsticks E (3 c), are equivalent to numerical eval-

uations for fixed E on a selection of islands having a range of characteristic

lengths.

One may easily visualize this in the polygon approximation. The number of

sides of polygon approximations of a given e are independent of E or L and

satisfy

N(W) = N(E,E/c) = N(cL,L) = N(c,l) (12a)

Thus,

P(EE/e) = P(c,1)E/e (12b)

or

P(E,L) = P(e,I)L = P(e,l)E/e (12c)

Similarly,

G(c) = A(E,E/c)[e/E]2 = A(cL,L)/L 2 = A(c,1) (13a)

or

A(E,L) = G(e)L2 = A(e,1)L2 = A(c,I)(E/e)2  (13b)

Thus, to model a perimeter-area plot, one does numerical calculations for a

single island having unit characteristic length and plots log(P(c,1)/C]

(= log[N(c)]) versus log[A(c,1)/c 2 ] (= log(G(c)/C 2 ]) for a range of e values

equivalent to a plot of log[P(E,L)/E] versus log(A(E,L)/E 2 ] at fixed E for a

range of L values. The slope of such plots is given by Eq. (9).

Note that the model fractal curves studied here become rectifiable at some

level of elaboration. Thus, the curves become rectifiable for A/E2 exceeding a

value determined by the level of elaboration of the model fractal. The slope of
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log(P/E] versus log[A/E2 ] curves deduced from analysis of these model fractal

curves will, therefore, go to 31 for such ranges of log[A/E2 ]. This sort of

constraint on fractal behavior is not expected to be observed in experimental

fractal analysis.

Curves Having Constant Area Shape Factor

Equation (10) implies that the "measured" fractal dimension is identical to

the intrinsic fractal dimension (i.e., Om u D) when the area shape factor G(e)

is constant. Thus, fractal dimensions measured via the perimeter-area relation

DM will approximate D. Further, for constant G(c), plots of log[P(e,1)/e] ver-

sus log[e- 2] yield graphs of log[P(E,L)/E] versus log[A(EL)/E2].

Rectifiable curves: the regular decagon. Figure 1 is a plot of the base 10

logarithm (log) of the perimeter determined by the box-counting algorithm in

units of the diameter d versus the log of the yardstick in units of d for a

regular decagon. Each point is the root mean square (rms) average of the result

of 18 random sitings of the measuring grids. The data presented in Figure 1 are

"typical" results; the general trend of the data is reproduced, but the individ-

ual points, especially in the large E/d region, change for other random sitings.

The measured perimeter converges as the yardstick is reduced as expected for a

rectifiable curve. (To obtain the "true" perimeter one would have to account

for the fact that the average length of a segment cutting through a box is

greater than the box side, etc.)

The insert in Figure 1 shows the same data plotted in perimeter-area form.

The straight line has slope 4, which is consistent with the fact that D = 1 for

a rectifiable curve. Deviations from the line are easily discernible for

log[P/El < 0.8 (i.e., for P/E < 6). Deviation from ideal behavior is more

conspicuous in the perimeter-yardstick plot than it is in perimeter-area plot.
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The data in the main curve of Fioure 1 imply, for example, that a yardstick

larger than d/2 or d/1O would be "too large" for 5 or 1 percent rms measurements

of P, respectively, for rectifiable curves (based on sets of 18 measurements at

a given yardstick).

Essentially the same result is obtained for circles. Similar results are

obtained for equilateral triangles, except that at large yardsticks the decrease

in the rms P-values is more dramatic and closer to monotonic. Similar yardstick

"too large" effects are obtained for fractal curves.

Fourth generation Koch quadric islands. It is well-known that the area of

a Koch quadric island is constant at each stage of construction. Thus, the

resultant fractal curve contains the same area at all scales. For every new bay

observable, a new promontory also comes into view as the scale is refined. (In

practice, the number of new bays observed may not equal exactly the number of

new promontories observed as E is reduced, etc.) The cessation of the construc-

tion at the fourth generation does not spoil the area invariance, but does

impose an inside yardstick cutoff on the fractal behavior in a natural way. For

E/L0 > (1/4)4 = 0.004, the curve exhibits fractal scaling with 0 = 1.5; for E/L0

< 0.004, the curve is rectifiable (D = 1) with P/L0 = 4[(1/4)4]- = 64.

Figure 2 shows plots of natural logarithm (In) of normalized length

measured according to the box-counting algorithm versus In of normalized

yardstick for two placements of the origins of the measuring grid. (Natural

logarithms are employed in Figure 2 to allow more direct comparison with Figures

1 to 3 of Pande et al., in which LOG stands for In.) The straight line, which

is not fit to either data set, is that given by Eq. (1) for the fractal part of

the construction; it is clearly consistent with the "measured" perimeter-

yardstick relation.
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Note that as E/L0 falls below 0.004 in Figure 2, fractal scaling ceases and

P/L0 converges toward 64. That is, the perimeter-yardstick data reflect the

fact that the fractal dimension changes from 1.50 to 1.0 as E decreases through

0.004 for the present construction. This situation could be considered in the

context of the "tamed coastline" discussion of Mandelbrot (ref 6).

Figure 3 is a plot of the base 10 logarithm (log) of perimeter in units of

the yardstick E versus the log of the area in units of E2 for the fourth genera-

tion Koch quadric island. The data shown correspond to e > 0.004, each point is

the average of values obtained for 18 randomly selected placements of the

measuring grids in the box-counting algorithm, and the calculations are per-

formed by varying E on a single island, having unit square initiator as

described above.

The straight line shown is an unweighted least squares fit to the data,

yielding a "measured" fractal dimension DM of 1.45, which is to be compared with

the fractal dimension of the construction, i.e., D = 1.50. These results are

typical of sets made with 18 random placements of the measuring grids. They are

consistent with the theory presented here and with the conventional theory; they

are inconsistent with the predictions of the theory of Lung and Mu as contained

in their Eq. (12), which would yield Dm < 1.29.

If the data for c < 0.004, which correspond to larger A/E2 values, were

shown, then curvature analogous to that in Figure 2 at small c would oe seen.

This is to be expected since, as previously discussed, fractal behavior ceases

(i.e., the curve is rectifiable) for such values of e in fourth generation Koch

quadric islands.

Odd element sawtooth constructions: fourth generation, five-element, 110-

degree sawtooth triadic islands. It is apparent from their symmetry that the

odd element sawtooth generators leave the area invar4ant at each stage of the
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Koch five-element. 110-degree sawtooth triadic islands. For these islands,

self-intersection occurs only after the fourth generation. That is, the

construction analyzed does not contain self-intersections. The results of 18

individual applications of the box-counting algorithm for random sitings of the

grid origin (symbol: +), as well as the rms values at each abscissa (symbol:

open square), are shown. One does not see 18 points at each abscissa, since

duplicates are common, especially for small log(A/E2 ]. The transition to rec-

tifiable behavior apparent for log[A/E2 ] > 4 reflects the level of elaboration

of the model fractal curve. No systematic deviation from linearity at small

log[A/E2 ] is apparent. The measured fractal dimension including all data for

log[A/E2 ] < 4 is OM = 1.162; by construction 0 = 1.134.

The increased scatter observed at small A/E2 , which corresponds to rela-

tively large e, has nothing to do with fractal behavior and can be understood by

considering the application of the box-counting algorithm to the measurement of

the length of rectifiable curves seen in Figure 1. The normalized rms

deviations associated with the rms values shown in Figures 1, 3, 4, and 6 versus

E/rA are essentially scattered about a single curve.

The systematic deviations at large log(E/Lo], which are apparent in Figure

1, amount to a deviation of only about 0.04 at log(E/Lo] = -0.04 (which

corresponds to log[A/Ez] z 0.08). Thus, such systematic deviations are dif-

ficult to see on the scale of variations in Figures 3, 4, and 6.

The data shown in Figure 4 exhibit minimal scatter, but are not atypical

results for this particular construction and are representative of results

obtained by SIM analysis of odd element sawtooth Koch constructions. The larger

(non-systematic) scatter in the rms values at small log(A/E2] exhibited in
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Figure 3 are toward the other extreme of typical results obtained ir, the model

calculations for constant G(c) in the present study.

Curves Having Variable Area Shape Factor

Equation (10) implies that the "measured" fractal dimension may deviate

from the intrinsic fractal dimension when the area shape factor G(c) is

variable. Thus, the fractal dimension DM as determined by the perimeter-area

relation may differ from the "intrinsic" fractal dimension D. The reliability

of the standard technique to determine fractal dimension in the variable G(C)

case is approached via analysis of simple Koch fractals.

In the model perimeter-area calculations, we use the fact that for general

G(c), plots of log[P(c,1)/c] versus log[G(c)/c 2 ] for a single island (having

unit characteristic length) and varying c are equivalent to plots of

log[P(E,L)/E] versus log[A(EL)/EZ ] at fixed E for an ensemble of self-similar

islands of varying L.

Even element Zhang and Lung "sawtooth" islands. The even element genera-

tors of Zhang and Lung yield interesting models for slit island bounding curves

and provide simple model fractals having variable G(c). The maximum growth rate

of G(e) with decreasing e is obtained in the case where the Koch construction at

each stage applies the outgoing generator to each segment of the previous stage.

Consider the even n element sawtooth generator having tooth angle 6

illustrated in Figure 5. The scaling factor r is

r = Lm/Lm_1 = [n sin(0/2)!-' (14)

Thus, for each stage m-1 segment, at stage m the construction produces n/2 new

triangular areas equal to

Lm2 sin(e/2) cos(9/2) = [L0
2 sin(6)/2] [rz]m (15)
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For each element of length L0 in the initiator there will be [n/2]m such

triangles at stage m, and thus, the total area growing out of the element of

length L0 in the initiator at stage m is

A(m) = [L0
2 sin(e)/2] Sm (16a)

where the geometric series Sm is

m

Sm = [n rz/2]i = (1-(n r2/2)m]/[n - 1 - n cos(9)] (16b)

i=1

and where, recalling that c = rm = Lm/LO, one can express A(m) as

A(m) = B(n,e) L0
2 [1-(n r2/2)ml

= B(n,e) L0
2 [l-(n/2)mc2 ]

= B(n,e) L0
2 [1-Ew ]  (17a)

where

B(n,e) = 31 sin(e)/[n - 1 - n cos(e)] (17b)

and

w = 2 - log(n/2)/log[n sin(e/2)] (17c)

= 2 - [log(n/2)/log(n)] 0 (17d)

The last equality uses

D = log(n]/log[n sin(e/2)] (17e)

Thus, expressions for G(e) for outgrowing even n sawtooth constructions can

be written down directly. In particular, for square initiator,

G(W) = 1 + 4 B(n,6) [1 - ew]  (18)

Clearly, for an ingrowing sawtooth construction, one reverses the sign on the

4B(n,9) term.

The alternating (increase area, decrease area, etc.) construction is again

easy to sum but yields a jumpy G(c), which is essentially equivalent to a

18



"noisy" constant G(e) case (i.e., d[1n(G)]/d[Jn(e2)] = 0). Similarly, if one

orients the even sawtooth generators at random for each segment in the construc-

tion, then G(c) is statistically constant. Note that all the constructions

discussed in this section, which are based on even n generators of angle 0, have

the same "intrinsic" fractal dimension as given in Eq. (17e).

Even element sawtooth construction: outgrowing, tenth generation, two-

element, 140-degree sawtooth triadic islands. Figure 6 presents perimeter-area

results for outgrowing, tenth generation, two-element, 140-degree sawtooth

triadic islands. For these islands, self-intersection occurs after the sixth

generation and the construction analyzed contains self-intersections at approxi-

mately one percent of its elements. The results of 18 individual applications

of the box-counting algorithm for random sitings of the grid origin (symbol: +),

as well as the rms values at each abscissa (symbol: open square), are shown.

One does not see 18 points at each abscissa, since duplicates are common espe-

cially for small log(A/Ez].

The line in Figure 6 is least squares fit for values of log[A/E2 ] between 2

and 4.25. As a direct result of the variation of the area shape factor G(C),

systematic deviation from linearity in the rms values of log[P/E] at small

log[A/E2 ] are apparent. (Data for log[A/E2 ] > 4 also deviate from linearity

reflecting the transition to rectifiable behavior in this tenth generation

construction.) The measured fractal dimension including all data is DM = 1.060

for 2 < log[A/E2 ] < 4.25 DM = 1.078, and by construction 0 = 1.099.

Note the following:

1. Data for log[A/E2 ] < 2 would probably be excluded in practical SIM

analysis based on the routine yardstick "too large" constraint.

2. The area growth rate with decreasing scale (i.e., decreasing yardstick)

for the model discussed is probably unrealistically high for fracture surface
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sections. Nevertheless, the error introduced by inclusion of the low loq(A/E2 ]

data is less than 0.02 for this case.

3. Least squares fits covering a selection of lower cutoffs on log[A/E 2 ]

would expose the variable G(c) effect and would allow one to determine G(c) for

the present model.

SUMMARY

1. Perimeter-yardstick data were generally accumulated for Koch construc-

tions and for values of log(E/Lol uniformly distributed over values between -0.1

to -3.0. These data are essentially equivalent to SIM data (i.e., perimeter-

area data) for values of log[A/E 2] uniformly distributed over 0.2 to 6.0.

The SIM determinations of 0 were based on 18 random sitings of

measuring grids for each of 20 islands, having log(A/E 2 ] between 2 and 4.25.

The model results may be compared directly to experimental SIM results,

which are typically based upon roughly 100 islands, having log[A/EZ ] distributed

over values between 2 and 5.

2. Fractal dimensions were "measured" excluding yardstick "too large"

regions and data at yardsticks so small that the rectifiable nature of the

constructs becomes evident. The measured fractal dimensions Om for all the

model fractal curves studied were (within uncertainties inherent in the measure-

ment algorithm) equal to the intrinsic fractal dimensions 0 of the construc-

tions.

Specifically, the SIM analysis yielded the intrinsic fractal dimension

0 (= 1.50) for Koch quadric islands, in contrast to the theoretical predictions

of Lung and Mu (ref 5).

3. The model fractal islands in the present study become rectifiable

(i.e., 0 - 1.0) for log[E/Lo] < -2.15, which corresponds to log(A/E2 ] > 4.25.
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Thus, inclusion of data corresponding to log[A/E ] > 4.25 yields a lower

measured fractal dimension and such data have usually been excluded.

Note that the model data presented here would be correctly interpreted

in perimeter-area or perimeter-yardsticK analyses:

Figures 2 and 3 - The data in Figures 2 and 3 were obtained for

fourth generation Koch quadric islands rectifiable for E/L0 < (1/4)4, which

corresponds to In[E/LO1 < 41n[1/4] ) -5.5 or log[A/E2 ] > 8log[4] z 4.8. The

transition to rectifiable behavior is easily observed for fn(E/Lo] < -5.5 in

Figure 2 and could be observed as a distinct change in slope if the data for

log[A/E2 ] > 4.25 were shown in Figure 3.

* Figure 4 - The transition from' rdctai to rectifiable behavior near

log[A/E2 ] = 4 is apparent in the fourth generation, five-element sawtooth

perimeter-area data plotted in Figure 4.

* Figure 6 - Although not dramatic (since Dm onlV changes from 1.08 to

1.00), the transition to rectifiable behavior at large log(A/Ez ] is evident in

Figure 6.

* Note that perimeter-yardstick curves for the data presented in

Figures 4 and 6 exhibit breaks at appropriate yardstick values, similar to that

seen in Figure 2.

Thus, the abrupt changes of D inherent in the Koch constructions

studied here are readily detected by casual viewing of perimeter-area or

perimeter-yardstick data. A routine mechanical analysis of the model data over

various ranges of log(E/Lg] or log[A/E2 ] could be used to determine both 0

values.

4. The consequences of yardstick "too large" in the measurement algorithm

appear for islands having log(A/E2 ] < 2 or log(E/Lo] > -1. A variety of effects

can be observed; the primary results may be summarized as follows:
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* There is a tendency for the scatter in measured lengths to increase

as the yardstick length increases. This is a classical effect and may be

observed for rectifiable curves (as illustrated in Figure 1), as well as fractal

curves (as illustrated in Figures 2, 3, 4, and 6).

* Perimeter-yardstick plots for the model fractal and rectifiable

curves studied here have the form seen at large log(E/Lo] in the experimental

data shown in Figures 1 to 3 of Pande et al. (ref 4). Pande et al. describe

this scatter as "...a systematic departure from linearity..." and it comprises

part of their indictment of the fractal characterization of fracture surfaces

and of the SIM. This "systematic departure" is characteristic of yardstick "too

large" length measurements.

* No significant systematic deviation from ideal behavior for log[A/E2]

< 2 is noticeable in SIM analysis of fractal curves having constant shape area

factor G(e).

Consider the data in Figures 3 and 4, which correspond to perimeter-

yardstick plots of the form described by Pande et al. The essentially non-

systematic, large scatter for these fractal curves at small log[A/E2 ] (which

corresponds to large log[E/Lo]) is essentially equivalent to the "scatter" seen

on application of the measurement algorithm to rectifiable curves for yardstick

"too large" cases as seen in Figure 1.

* Systematic deviations from ideal behavior are easily observable in

the small log[A/E2 ] region of rms perimeter-area plots produced by SIM analysis

of fractals having relatively strongly scale-dependent areas A(E/Lo). That is,

systematic deviations from ideal behavior are observable in the small log(A/E2 ]

region of rms perimeter-area plots in the case of fractals having strongly

variable shape area factors G(c). The situation is illustrated for the case of

the two-element sawtooth triadic island in Figure 6.
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* Supplementing perimeter-area data sets by including log[A/Ez ] < 2

data decreases (increases) Dm in variable G(c) cases for yardstick-dependent

area A(E), which increases (decreases) as E is decreased. However, the magni-

tude of the "error" introduced in the measured fractal dimension Dm is rela-

tively small even for the relatively fast growing islands of Figure 6.

* The systematic deviation from ideal behavior illustrated in Figure 6

is effectively obscured when the raw data (rather than the rms data) are exam-

ined. However, of course, the same change in Dm could be detected by least

squares analysis of the raw data. (Clearly the same Om is determined by least

squares analysis of the unweighted rms data or the underlying raw data.)

* Typical experimental SIM results exclude data corresponding to

yardstick "too large" (i.e., log[E/Lo] > 1 or log[A/E 2] < 2) values. Thus, the

classical yardstick "too large" and variable shape area factor effects are

negligible in typical experimental SIM analyses.

5. The scatter in perimeter-yardstick data for a given fractal island is

inherently (relatively) larger than that in perimeter-area data for an ensemble

of self-similar islands. This is apparent in the results of the model calcula-

tions undertaken here and can be understood as follows. Consider an ensemble of

self-similar curves (island boundaries) of fractal dimension D and a series of

measurements, which determine D with a relative error 6D from perimeter-area

analysis based on a subset of the ensemble and perimeter-yardstick analysis

of a particular island. (For the Koch fractal curves described here, this could

be the same data set.) Perimeter-area analysis measures D/2, hence the relative

error is 6D/D. Perimeter-yardstick analysis measures D-1, hence the relative

error is 6D/(D-1).
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To be specific, consider a fracture surface having D = 2.100 with 5D =

0.025 so that the slit islands have D = 1.100 and 60 = 0.025. Then the relative

error in the perimeter-yardstick determined parameter, D-1, is 25 percent, while

that for the perimeter-area determined parameter, 0/2, is 2.3 percent. Clearly,

the perimeter-area plot will be more pleasing to the eye than the corresponding

perimeter-yardstick plot.

CONCLUSIONS

1. Pande et al.'s conclusion that the SIM is "fundamentally flawed" is not

supported by their data. We respond to their principal criticisms of SIM as

follows:

* Although the gross discrepancy in the magnitude of D for the titanium

alloy fracture surfaces studied by Pande et al. determined by profile Fourier

analysis and by SIM is not understood, it does not indicate that SIM (or Fourier

profile analysis) is not reliable.

A possible explanation of the gross discrepancies in the measured 0

values might be related to the different inherent yardsticks (unspecified by

Pande et al.) in the two techniques.

One should not overinterpret the discrepancy. The SIM data presented

in Figure 4 of Pande et al. appear to be consistent with a much lower value

(essentially of the magnitude determined in their profile Fourier analysis) of 0

than they derived. Thus, it is possible that the discrepancy is spurious.

At any rate, their SIM-determined fractal dimensions 0 correlate with

their Fourier analysis deduced D and with their measured dynamic tear energy.

Thus, it seems that both techniques are measuring dimensional aspects of the

fractal nature of titanium alloy fracture surfaces.
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* The "...systematic departure from linearity..." at large yardstick

values in the perimeter-yardstick data of Pande et al. does not indicate that

SIM is not reliable. Their data exhibit the same "intrinsic scatter" and

deviations from linearity at larger yardsticks as that seen in the model calcu-

lations reported here. We would argue that absence of deviations and "scatter"

would have been alarming.

* Pande et al. claim that their titanium fracture surface slit islands

are not self-similar. They base this conclusion on the test of self-similarity

implicit in the following statement from Reference 4: "We recognize that an

essential assumption of this approach is that island shape (say ratio of length-

to-breadth) is invariant with size." Since in their titanium alloy fracture

surfaces (see their Figure 6) larger islands tend to be skewed least, etc., they

conclude that fracture surfaces, in general, are not self-similar.

This line of reasoning is incorrect. Invariance of the "form fac-

tor" (= ratio of length-to-breadth) with area is characteristic of similar

Euclidean figures, but is not required for self-similar fractal curves. Such

invariance is obviously not required for statistically self-similar curves,

which one expects to find bounding slit islands. Nor is it required for

literally self-similar fractals. To get a feeling for how the results presented

in Figure 6 of Pande et al. are consistent with expectations for literally self-

similar mathematically-defined fractals, think, for example, of Koch fractals

based on a rectangular initiator and a two-element 110-degree sawtooth generator

at various scales.

2 Lung and Mu's conclusion that SIM yields measured fractal dimension Dm

different from the intrinsic fractal dimension is inconsistent with the model

calculations presented here. In particular:

25



* The theoretical predictions of Lung and Mu concerning Om for Koch

quadric islands were shown to be incorrect. It was shown that SIM yields the

intrinsic fractal dimension D (= 1.50) of these constructions for yardstick

values at which the theory of Lung and Mu implies that Dm < 1.30.

* Even for constructions whose areas vary strongly with scale, rela-

tively small variations in Dm from D are predicted and observed in the present

study. These variations could be eliminated by limiting the analysis to

islands having log[A/E 2] > 2, i.e., by limiting the analysis to islands

satisfying the routine constraint on yardstick length previously discussed in

this report, which can be understood in terms of applications of the measurement

algorithm to the ordinary curves of Euclidean geometry.

3. Lung and Mu's observation that the measured fractal dimensions Dm of

their steel alloys exhibit negative correlation with fracture toughness (in

accord with the results obtained in all other metallic fracture studies) greater

than 1 gm yardsticks but exhibit positive correlation with fracture toughness at

0.08 and 0.15 pm yardsticks, appears to be an important finding.

4. The variation of Dm with E observed by Lung and Mu is consistent with

the discussion of fracture surface fractal structure of Mandelbrot, Passoja, and

Paullay (ref 1) and of Mandelbrot's discussion (ref 6) of the variations of

fractal dimension with yardstick in his analysis of the length of the coastline

of Britain. The multifractal fracture discussion by Williford (ref 8) is also

relevant. Based upon the present results and the discussions in References 1,

6, and 8, we hypothesize that the variation of Om with E reflects a true

variation of the intrinsic fractal dimension D of the fracture surface with

scale.

26



As suggested in this report, fractal properties (e.g., 0) may be scale-

dependent. Thus, yardstick dependence of the sort seen in the model perimeter-

yardstick analyses should be detectable in experimental perimeter-yardstick

analysis. Yardstick-dependent D should also be observable in experimental

perimeter-area analyses performed for a selection of E values and thus, in par-

ticular, in SIM studies of fracture surfaces for a range of E.

6. On the other hand, limits on fractal behavior of physical surfaces,

curves, etc. are (probably) not governed by the degree of elaboration as in the

fourth generation Koch quadric islands discussed here, for example. Thus, the

breaks seen in the model perimeter-area plots at large log(A/Ez ] in the present

study are not expected to occur in experimental perimeter-area data and, in par-

ticular, such changes in slope ari not expected to be observed in SIM studies of

fracture surfaces.

7. The following modifications of standard SIM procedure are recommended:

* For each island and for the range of yardsticks available, determine

rms values (and deviations) of log[P] and log[A] for a selection of sitings of

the measuring grids (or pixels, etc.). This might be accomplished, for example,

by rotating or repositioning the imaging stage, etc.

* Perform least squares fitting with points weighted according to their

rms deviations to determine D.

These modifications make more effective use of an ensemble of islands.

For example, they allow one to determine 0 to a given precision using a smaller

number of islands or to determine D to greater precision with a given ensemble

of islands. (Clearly these modifications are more important at small log[A/E2 ],

where the rms deviations are largest, etc.)
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The measuring grids were randomly positioned in the model calculations.

Although one must take care not to introduce spurious correlations, it may be

more convenient to use a prescribed selection of positions in practical applica-

tions.

Performing the measurements for the available range of E values, which

is apparently not general practice, is highly recommended in light of Lung and

Mu's results. It allows one to detect scale-dependent variations in the fractal

dimension and to perform complementary perimeter-yardstick analyses.

The numerical results reported here were obtained for unweighted least

squares fits to rms values; only small improvements in the determination of the

intrinsic fractal dimension of the fractal constructions were obtained by

employing weighted least squares fitting. Thus, although the second modifica-

tion is recommended, it is judged to be of secondary importance.
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TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

NO. OF
COPIES

CHIEF, DEVELOPMENT ENGINEERING DIVISION
ATTN: SMCAR-CCB-D 1

-DA 1
-DC 1
-DI 1
-DP 1
-DR 1
-DS (SYSTEMS) I

CHIEF, ENGINEERING SUPPORT DIVISION
ATTN: SMCAR-CCB-S 1

-SE I

CHIEF, RESEARCH DIVISION
ATTN: SMCAR-CCB-R 2

-RA I
-RE 1
-RM I
-RP I
-RT 1

TECHNICAL LIBRARY 5
ATTN: SMCAR-CCB-TL

TECHNICAL PUBLICATIONS & EDITING SECTION 3
ATTN: SMCAR-CCB-TL

OPERATIONS DIRECTORATE 1
ATTN: SMCWV-ODP-P

DIRECTOR, PROCUREMENT DIRECTORATE 1
ATTN: SMCWV-PP

DIRECTOR, PRODUCT ASSURANCE DIRECTORATE 1
ATTN: SMCWV-QA

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES. ATTN: SMCAR-CCB-TL, OF
ANY ADDRESS CHANGES.



TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. OF NO. OF
COPIES COPIES

ASST SEC OF THE ARMY COMMANDER
RESEARCH AND DEVELOPMENT ROCK ISLAND ARSENAL
ATTN: DEPT FOR SCI AND TECH 1 ATTN: SMCRI-ENM
THE PENTAGON ROCK ISLAND, IL 61299-5000
WASHINGTON, D.C. 20310-0103

DIRECTOR
ADMINISTRATOR US ARMY INDUSTRIAL BASE ENGR ACTV
DEFENSE TECHNICAL INFO CENTER ATTN: AMXIB-P
ATTN: DTIC-FDAC 12 ROCK ISLAND, IL 61299-7260
CAMERON STATION
ALEXANDRIA, VA 22304-6145 COMMANDER

US ARMY TANK-AUTMV R&D COMMAND
COMMANDER ATTN: AMSTA-DDL (TECH LIB)
US ARMY ARDEC WARREN, MI 48397-5000
ATTN: SMCAR-AEE 1

SMCAR-AES, BLDG. 321 1 COMMANDER
SMCAR-AET-O, BLDG. 351N 1 US MILITARY ACADEMY
SMCAR-CC 1 ATTN: DEPARTMENT OF MECHANICS
SMCAR-CCP-A 1 WEST POINT, NY 10996-1792
SMCAR-FSA 1
SMCAR-FSM-E 1 US ARMY MISSILE COMMAND
SMCAR-FSS-D, BLDG. 94 1 REDSTONE SCIENTIFIC INFO CTR 2
SMCAR-IMI-I (STINFO) BLDG. 59 2 ATTN: DOCUMENTS SECT, BLDG. 4484

PICATINNY ARSENAL, NJ 07806-5000 REDSTONE ARSENAL, AL 35898-5241

DIRECTOR COMMANDER
US ARMY BALLISTIC RESEARCH LABORATORY US ARMY FGN SCIENCE AND TECH CTR
ATTN: SLCBR-DD-T. BLDG. 305 1 ATTN: DRXST-SD
ABERDEEN PROVING GROUND, MD 21005-5066 220 7TH STREET, N.E.

CHARLOTTESVILLE, VA 22901
DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSIS ACTV COMMANDER
ATTN: AMXSY-MP 1 US ARMY LABCOM
ABERDEEN PROVING GROUND, MD 21005-5071 MATERIALS TECHNOLOGY LAB

ATTN: SLCMT-IML (TECH LIB) 2
COMMANDER WATERTOWN, MA 02172-0001
HQ, AMCCOM
ATTN: AMSMC-IMP-L 1
ROCK ISLAND, IL 61299-6000

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING
CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,
WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.



TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. OF NO. OF
COPIES COPIES

COMMANDER COMMANDER
US ARMY LABCOM, ISA AIR FORCE ARMAMENT LABORATORY
ATTN: SLCIS-IM-TL I ATTN: AFATL/MN
2800 POWDER MILL ROAD EGLIN AFB, FL 32542-5434

ADELPHI, MD 20783-1145
COMMANDER

COMMANDER AIR FORCE ARMAMENT LABORATORY
US ARMY RESEARCH OFFICE ATTN: AFATL/MNF
ATTN: CHIEF, IPO 1 EGLIN AFB, FL 32542-5434
P.O. BOX 12211
RESEARCH TRIANGLE PARK. NC 27709-2211 MIAC/CINDAS

PURDUE UNIVERSITY
DIRECTOR 2595 YEAGER ROAD
US NAVAL RESEARCH LAB WEST LAFAYETTE, IN 47905
ATTN: MATERIALS SCI & TECH DIVISION 1

CODE 26-27 (DOC LIB) I
WASHINGTON, D.C. 20375

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN: SLCBR-IB-M (DR. BRUCE BURNS) 1
ABERDEEN PROVING GROUND, MD 21005-5066

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING
CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,
WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.


